PhysicsAn-	dMaths]	utor.com			
Please check the examination det				didate informa	ition
Candidate surname			Other names		
Pearson Edexcel	Centre	Number		Candidate I	Number
International Advanced Level					
Sample Assessment Materials fo	or first te	aching Se	eptember	2018	
(Time: 1 hour 30 minutes) Pap		Paper Re	aper Reference WMA14/01		
Mathematics					
International Advance	d Lev	el			
Pure Mathematics P4					
You must have: Mathematical Formulae and Sta	tistical T	ables, cal	culator		Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

S59758A
©2018 Pearson Education Ltd.
1/1/1/

DO NOT WRITE IN THIS AREA

1. Use the binomial series to find the expansion of

$$\frac{1}{(2+5x)^3} \qquad |x| < \frac{2}{5}$$

in ascending powers of x, up to and including the term in x^3

Give each coefficient as a fraction in its simplest form.

(6)

$$2^{-3} \left(1 + \frac{5}{2} \times \right)^{-3}$$

$$= 1+ (-3) (5/27) + (-3) (-4) (5/27)^{2} + (-3) (-4) (-5) (5/27)^{3}$$

$$= 1+ (-3) (5/27) + (-3) (-4) (5/27)^{2} + (-3) (-4) (-5) (5/27)^{3}$$

$$= 2^{-3} = \frac{1}{8}$$

A curve C has the equation

$$x^3 + 2xy - x - y^3 - 20 = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

(b) Find an equation of the tangent to C at the point (3, -2), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(2)

$x^3 + 2xy - x$	-43-20-0	,
))	

Implicit diff

$$\frac{dy}{dx} = \frac{1 - 2y - 3x^2}{2x - 3y^2}$$

$$\frac{1-2(-2)-3(3)^2}{2(3)-3(-2)^2}=\frac{11}{3}$$

$$-2 = \frac{11}{3} (3) + (\cdot) = -13.$$

$$y = \frac{11}{3}x - 13$$
.

3.
$$f(x) = \frac{1}{x(3x-1)^2} = \frac{A}{x} + \frac{B}{(3x-1)} + \frac{C}{(3x-1)^2}$$

(a) Find the values of the constants A, B and C

(4)

- (b) (i) Hence find $\int f(x) dx$
 - (ii) Find $\int_{1}^{2} f(x) dx$, giving your answer in the form $a + \ln b$, where a and b are

(6)

a)
$$A(3x-1)^{2}+13(x)(3x-1)+c(x)=1$$
.

1/3(=1 A = 1

(b) i)
$$\int \frac{1}{x} - \int \frac{3}{3x-1} + \int \frac{3}{(3x-1)^2}$$

$$= (n|x| - 3|n|3x-1) + 3 (3x-1)^{-2}$$

$$= |n|x| - |n|3n - 1| - 1 + C.$$
(ci) $\left[|n|x| - |n|3x - 1| - \frac{1}{3x - 1} \right]_{1}^{2}$

$$|n|2|-|n|6-||-||=|n(\frac{2}{5})-||$$

$$\ln(1) - \ln(2) - \frac{1}{2} = \ln(\frac{1}{2}) - \frac{1}{2}$$

$$\left[\ln(^{2}/_{5})^{-\frac{1}{5}}\right] - \left[\ln(^{2}/_{2})^{-\frac{1}{2}}\right] = \ln(^{\frac{4}{5}}) + \frac{3}{10}$$

Leave blank

4.

Figure 1

Figure 1 shows a sketch of the curve C with parametric equations

$$x = \sqrt{3}\sin 2t \qquad y = 4\cos^2 t \qquad 0 \leqslant t \leqslant \pi$$

COSZA = 2cos2A-1 COSZA+1 = COS2A.

(a) Show that $\frac{dy}{dx} = k\sqrt{3} \tan 2t$, where k is a constant to be found.

(5)

(b) Find an equation of the tangent to C at the point where $t = \frac{\pi}{3}$

Give your answer in the form y = ax + b, where a and b are constants.

(4)

(a)
$$x = \sqrt{3} \sin 2t$$
 $y = 4\cos^2 t$. $\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dt}{dx} = \frac{-4\sin 2t}{2\cos 2t}$
 $\frac{dx}{dt} = 2 \times \sqrt{3} \cos 2t = 2 \sqrt{3} \cos 2t$
 $\frac{dy}{dt} = -2 \times \sqrt{3} \tan 2t = \frac{1}{2} \times \frac{1}{3}$
 $\frac{dy}{dt} = -4 \sin 2t$. $\frac{dy}{dt} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{-2\sqrt{3}}{3} \tan 2t = \frac{1}{2} \times \frac{1}{3}$.
 $\frac{dy}{dt} = -4 \sin 2t$. $\frac{dy}{dt} = \frac{1}{3} \sin (2 \times 1) = \frac{3}{2}$.
 $\frac{dy}{dt} = -4 \sin 2t$. $\frac{dy}{dt} = \frac{1}{3} \sin (2 \times 1) = \frac{3}{2}$.
 $\frac{dy}{dt} = -4 \sin 2t$.

Question 4 continued

$$M=2$$
 ($3/211$)

$$1=\frac{3}{2}(2)+C$$
 C=-2

(Total for Question 4 is 9 marks)

Q4

5.

Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = 4x - xe^{\frac{1}{2}x}$, $x \ge 0$

The curve meets the x-axis at the origin O and cuts the x-axis at the point A.

(a) Find, in terms of $\ln 2$, the x coordinate of the point A.

(2)

(b) Find
$$\int xe^{\frac{1}{2}x} dx$$

(3)

The finite region R, shown shaded in Figure 2, is bounded by the x-axis and the curve with equation $y = 4x - xe^{\frac{1}{2}x}$, $x \ge 0$

(c) Find, by integration, the exact value for the area of R.

Give your answer in terms of ln 2

(3)

(a)
$$x axy (y=0)$$

 $0 = 4x - xe^{y/2x}$ $4 - e^{41/2x} = 0$
 $x (4(-e^{xy/2x}) = 0$ $e^{41/2x} = 4$
 $x = 0$ $\ln e^{41/2x} = \ln 4$
 $1 = x < \ln 4$
 $1 = x < \ln 2$
 $1 = x < \ln 2$

Question 5 continued

$$A = X$$
 $A = 0.15 \times A = 0.15 \times A$

$$2xe^{1/2x} - \int 2e^{1/2x} = 2\pi ce^{1/2x} - 4e^{1/2x} + c$$

$$[2x^{2} - 2xe^{1/2x} + 4e^{1/2x}]^{4\ln 2}$$

$$2(4\ln 2)^{2} - 2(4\ln 2)e^{1/2(4\ln 2)} + 4e^{1/2(4\ln 2)} - [2(0)^{2} - 2(0)e^{\frac{1}{2}(0)} + 4e^{\frac{1}{2}(0)}]$$

$$32(\ln 2)^2 - 32(\ln 2) + 16 - 4$$

Leave blank

sumption: It a	and b are positive real numbers, a+b> 25
is tru	
atb < Wab	
$d: (a+b)^2 < (2)$	
a2+20b+b2 <	
a2-2ab+b2<	
$(a-b)^2 < 0$	=> the square of any real numbers can
	be smaller than U
	: contradiction
	: If a & b are positive numbers, atb>
	is true

Leave blank

7.

Figure 3

Figure 3 shows a sketch of the curve C with parametric equations

$$x = 4\cos\left(t + \frac{\pi}{6}\right) \qquad y = 2\sin t \qquad 0 \leqslant t \leqslant 2\pi$$

(a) Show that

$$x + y = 2\sqrt{3}\cos t \tag{3}$$

(b) Show that a cartesian equation of C is

$$(x+y)^2 + ay^2 = b$$

where a and b are integers to be found.

(2)

(a) $X = 4(0)(++1)/6$		4	
4cost cos 116 - 4sintsing	7/6	(2C+4)	+342
253 cost - 25int		1	2
x = 253 cost - 25 mt		(X+4)2 + 342 = 12
oct 4 = 2 23 cost		J	Q = 3
	- 10 v.		6=12
(b) cost = 2 +y	I sint =	9/	. 0
213		2	
CO22F + 21N2F=1			
$\left(\frac{x+y}{2(3)}\right)^2+\left(\frac{y}{2}\right)^2=1$	(x+y)	1 4	$= 1 (x+y)^{2} + 3y^{2} = 1$
	307		(x+4)2+3y2=12

8. Water is being heated in a kettle. At time t seconds, the temperature of the water is θ °C.

The rate of increase of the temperature of the water at time t is modelled by the differential equation

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda(120 - \theta) \qquad \theta \leqslant 100$$

where λ is a positive constant.

Given that $\theta = 20$ when t = 0

(a) solve this differential equation to show that

$$\theta = 120 - 100e^{-\lambda t} \tag{8}$$

When the temperature of the water reaches 100 °C, the kettle switches off.

(b) Given that $\lambda = 0.01$, find the time, to the nearest second, when the kettle switches off. (3)

8) (a) do l	(120 - 0)
dt	
d0 = 1(120-0)4+
d0	
120-0	120-0
111120-01	= 1+ c -1+ = 1 n 1120 -0 1 + c
-1	7-1(0) = 1/11000 + C
-17/120-01	= N+ + C
	0 01 = 9
- VF =	111120-01-11100
	In 120-0 e-lt = 120-0
	001 001
	100e-NE = 120-0
	G = 130 - 1006-VF
(b) N=0.01	
Q=100.C	18/120-1001 =1(=1/t = 0 0) (1) -1/t = -1.609 43 791211 0 2
0 ,000	$\frac{11(120-100)}{1000} = 1(-100)$ $\frac{1}{1000} = 1(-100)$ $\frac{1}{1000}$
	1000000000 = 20 0 t = 1-609437912 = 160.9

= 1615

where μ is a scalar parameter.

The point A lies on l_1 where $\mu = 1$

(a) Find the coordinates of A.

(1)

The point P has position vector $\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$

The line l_2 passes through the point P and is parallel to the line l_1

(b) Write down a vector equation for the line l_2

(2)

(c) Find the exact value of the distance AP.

Give your answer in the form $k\sqrt{2}$, where k is a constant to be found.

(2)

The acute angle between AP and l_2 is θ

(d) Find the value of $\cos \theta$

(3)

A point E lies on the line l_2

Given that AP = PE,

(e) find the area of triangle APE,

(2)

(f) find the coordinates of the two possible positions of E.

(5)

Question 9 continued

$$V = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$$

c)
$$\overline{AP} = \overline{OP} - \overline{OA}$$

$$\binom{1}{5} - \binom{3}{5} = \binom{2}{5} = \binom{2}$$

$$= 2\sqrt{2} \quad k = 2$$

d)
$$\overrightarrow{AP} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} \begin{pmatrix} -5 \\ 3 \end{pmatrix}$$
, $\cos \theta = a \cdot b$

$$= \frac{16}{2\sqrt{5}} \times 5\sqrt{5} = \frac{1}{5}$$

$$\sqrt{(-5)^2 + (4)^2 + (3)^2} = 2^{2}$$

$$\int 50^2 = 252$$

$$7 = + 2$$

$$= \begin{pmatrix} -\frac{1}{3} \frac{3}{5} \\ 16 \frac{1}{5} \end{pmatrix} \qquad \begin{cases} \frac{3}{17/5} \\ \frac{17}{5} \\ \frac{1}{5} \end{cases}$$